A toolbox for academia and non-academia people to get in touch with various methods for uncertainty quantification in machine learning.
This project is maintained by werywjw
import sklearn.datasets
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
For this we will load the moon data and apply an KNN Algorithm
X,y = sklearn.datasets.make_moons(n_samples=100,noise=0.2,random_state=0)
plt.scatter(x=X[:,0],y=X[:,1],c=y)
plt.show()
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0)
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train,y_train)
KNeighborsClassifier()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsClassifier()
from sklearn.inspection import DecisionBoundaryDisplay
disp = DecisionBoundaryDisplay.from_estimator(estimator=model, X=X_test)
scatter = disp.ax_.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k")
disp.ax_.legend(
scatter.legend_elements()[0],
["Class 0", "Class 1"],
loc="lower left",
title="Classes",
)
plt.show()